

Einführung APRS

Ausgabe: 16.07.2025

Das Automatic Packet Reporting System (APRS) wurde vom Bob Bruninga, WB4APR († 2022) ab 1982 entwickelt. Die häufigste Anwendung von APRS ist die Übermittlung von Standortdaten, weshalb APRS *fälschlicherweise* auch "Automatic *Position* Reporting System" genannt wird.

Die Marke APRS wurde 1995 von WB4APR ins US-Markenregister eingetragen, heute gehört sie der gemeinnützigen Tuscon Amateur Packet Radio Corp. In Europa gibt es keine Eintragung.

Inhaltsverzeichnis	
1 Wie sieht APRS-Verkehr aus?	2
2 Ich möchte im Internet sehen wer QRV ist	2
3 Ich möchte von zu Hause aus auch mit dem Funkgerät (144,800 / 432,500 MHz) QRV sein	2
4 Ich möchte aus einem Fahrzeug, auf dem Schiff, am Fahrrad/Motorrad oder sonst portabel QRV	
werden	3
5 APRS Präsentation:	3

Wie sieht APRS-Verkehr aus?

Hier ein Beispiel (Darstellung der Software Direwolf):

```
Digipeater WIDE1 (probably OE6XTR) audio level = 81(22/20)
                                                            [NONE]
[0.3] IW4EGP>APU25N,T79PRS,OE6XTR,WIDE1*,WIDE2:>161643zDX: IZ4WRK 44.31.15N 11.44.11E 50.5 miles 311 18:17<0x0d>
U frame UI: p/f=0, No layer 3 protocol implemented., length = 105
 dest APU25N 0 c/r=0 res=3 last=0
 source IW4EGP 0 c/r=0 res=3 last=0
 digi 1 T79PRS 0 h=1 res=3 last=0
                    h=1 res=3 last=0
 digi 2 OE6XTR 0
 digi 3 WIDE1 0 h=1 res=3 last=0
 digi 4 WIDE2
                    h=0 res=3 last=1
  000: 82 a0 aa 64 6a 9c 60 92 ae 68 8a 8e a0 60 a8 6e ...dj.`..h...`.n
  010:
       72 a0 a4 a6 e0 9e 8a 6c b0 a8 a4 e0 ae 92 88 8a r.....1.....
  020: 62 40 e0 ae 92 88 8a 64 40 61 03 f0 3e 31 36 31 b@.....d@a..>161
  030: 36 34 33 7a 44 58 3a 20 49 5a 34 57 52 4b 20 34 643zDX: IZ4WRK 4
  040: 34 2e 33 31 2e 31 35 4e 20 31 31 2e 34 34 2e 31 4.31.15N 11.44.1
  050: 31 45 20 35 30 2e 35 20 6d 69 6c 65 73 20 33 31 1E 50.5 miles 31
  060: 31 f8 20 31 38 3a 31 37 0d
                                                        1. 18:17.
Status Report, UIview 32 bit apps
DX: IZ4WRK 44.31.15N 11.44.11E 50.5 miles 311= 18:17
Character code 0xf8 is probably an attempt at a degree symbol.
```

Es gibt mehrere Möglichkeiten in APRS (Automatic Packet Reporting System) grv zu werden:

Ich möchte im Internet sehen wer QRV ist

Im Internet gibt es viele Websites, auf denen man APRS Stationen verfolgen kann:

aprs.fi ist wohl einer der beliebtesten und bekanntesten Adressen.

Weitere Seiten:

- APRS Direct
- AGWTracker

Ausgabe: 16.07.2025

Darüber hinaus kann auch eine lokale App installiert werden, ein Liste von teilweise sehr alten Programmen ist unter *http://aprs-is.net/ClientSoftware.aspx* verfügbar.

APRS kann auch über das Hamnet empfangen und gesendet werden (siehe dazu APRS im HAMNET)

Ich möchte von zu Hause aus auch mit dem Funkgerät (144,800 / 432,500 MHz) QRV sein

Mit einem analogen 2m- oder 70cm-Funkgerät kann man selbst mit ARPS qrv sein. Am wichtigsten ist die Frequenz 144,800 MHz im 2m-Band. Aussendungen auf dieser Frequenz werden von zahlreichen Stationen empfangen und ins Internet (APRS-IS) weitergeleitet. Nicht flächendeckend ist hingegen die Nutzung von APRS auf 70cm auf der Frequenz 432,500 MHz. Der Vorteil dieser Frequenz ist die deutlich geringere Belegung, der Nachteil, dass Aussendungen auf dieser Frequenz nur in manchen Ballungsgebieten in APRS-IS weitergeleitet werden.

Früher wurden für APRS *TNC* (Terminal Node Controller) verwendet, es gab auch Lösungen mit Soundkarten und Sende-Empfangsumschaltung (PTT-Steuerung) über eine serielle Schnittstelle (COM-Port). Heute wird üblicherweise ein kleiner Rechner - typischerweise ein Raspberry Pi - verwendet. Die PTT kann dort direkt über programmierbare IO-Ports gesteuert werden. Es ist auch möglich einen USB-Serial-Adapter zu verwenden und über die serielle Schnittstelle die PTT zu steuern, in diesem Fall kann auch ein Rechner ohne frei programmierbare IO-Ports verwendet werden.

Als TNC wird heute (dh. 2023) oft Dire Wolf (Dokumentation) als Soundkarten-TNC verwendet. Im GIThub-Repo von Dire Wolf finden sich auch zahlreiche teilweise ältere Dokumente zur Performance von AX25 und APRS.

Für den Offline-Betrieb ohne Internet gibt es unter Windows die Software **PinPoint APRS** (Website). Das benötigte Kartenmaterial wird für die Offline Nutzung aus dem Internet geladen und lokal gespeichert. Für den Betrieb ist dann zusätzlich ein TNC (z.B. Dire Wolf) und ein Funkgerät notwendig. Damit ist die Software auch sehr gut für Not- und Katastrophenfunk geeignet. Bei Bedarf ist damit trotzdem auch die Kommunikation mit dem APRS-IS möglich.

Eine weitere von OE5DXL entwickelte Möglichkeit ist der DXL - APRStracker.

Ich möchte aus einem Fahrzeug, auf dem Schiff, am Fahrrad/Motorrad oder sonst portabel QRV werden

Dazu ist ebenfalls ein analoges Funkgerät notwendig. Der aktuelle Standort wird mit Satelliten-Navigation bestimmt (zB. über ein über USB an den Rechner angeschlossene GPS-Maus).

Es gibt auch analoge Amateurfunkgeräte (Handfunkgeräte und Mobilfunkgeräte), welche APRS bereits integriert haben.

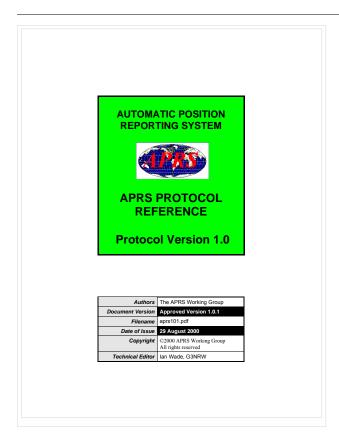
Ein alternative Möglichkeit bildet die automatische Standort-Übertragung von Digitalfunkgeräten. Diese Funkgeräte können den Standort automatisiert übermitteln. Im digitalen Netzwerk wird aus Standort + Rufzeichen eine APRS-IS Standortmeldung erzeugt.

Darüber hinaus kann APRS auch über Kurzwelle übertragen werden, mehr dazu unter *APRS auf KW*.

LoRaAPRS (APRS über LoRaWAN - **Lo**ng **Ra**nge **W**ide **A**rea **N**etwork) auf 70cm (433,775 MHz) ist eine weitere Betriebsart für APRS. Damit ist es möglich auch mit äußerst geringer Sendeleistung (60mW) Entfernungen bis zu 100km zu überbrücken.

APRS Präsentation:

Download: *APRS Einführungsvortrag von Manfred, OE7AAI 15.3.2024* (PDF 8,2MB)


Link: *Aufzeichnung des Vortrages von Manfred, OE7AAI und Franco, OE7BFT vom 15.3.2024* (Cisco Webex, Dauer 2:21:06h, PWD: APRS-oe7-2024)

Dokumentation ARPS 1.0 (aus dem Jahr 2000).

Quelle: http://www.aprs.org/doc/APRS101.PDF

Ausgabe: 16.07.2025

