WINMOR Protocol Specification (Preliminary)

Revision: 1.0.0 Oct 13, 2009

Rick Muething, KN6KB, AAA9WK

1.0 Scope:

This document describes the preliminary WINMOR sound card protocol at the physical and data link levels. It is the complete specification of the WINMOR protocol. It does not address higher level protocol layers. The WINMOR protocol is not proprietary and is released to the public domain. This document describes the 500 Hz and 1600 Hz bandwidth modes using 93.75 Baud (PSK) and 46.875 baud FSK modulation.

2.0 Purpose:

The intent of this document is two fold:

- a) To serve as a working document during protocol development and testing
- b) To serve as a template to allow others familiar with the art to build compatible drivers that support the data link protocol layer.

3.0 Definitions and Syntax:

Several specific terms and syntax are used in this document:

Definitions: A term or item is defined using the := symbol. This symbol can be read as "is defined as"

Implementation directives: These are key words that indicate how an item is to be implemented or recommend a method of implementation. They are always indicated by capitalized italic words. These are:

MUST := this must be followed to implement the protocol

MUST NOT := this must not be done to implement the protocol

SHOULD := this is the recommended way to implement the protocol

MAY := this is alternative way to implement the protocol.

The syntax above is always used to distinguish between the common use of the same words.

& is used to indicate catenation. E.g. Frame := Pilot & Data

4.0 Overview of the Protocol:

The WINMOR protocol is intended to be used for sending messages and binary data error free over a HF radio link. It is a Selective Repeat Automatic Retry reQuest (SRARQ) protocol where the Information Receiving Station (IRS) acknowledges receipt of the data to the Information Sending Station (ISS). Normally during a connection session the IRS and ISS exchange roles multiple times. The protocol is designed to handle the type conditions normally encountered in amateur radio transmission.

Specifically:

Generally low S/N levels

Non "channelized" frequencies with interference

Poor to moderate propagation conditions including poor multipath environment.

Frequency offset (between send and receiver) and drift

Sound card sampling rate error and drift

The WINMOR protocol uses basic OFDM (Orthogonal Frequency Division Multiplexing) modulation and a number of modulation modes and error correction schemes to adapt to changing channel conditions. There is currently 2 operating bandwidths of 500 and 1600 Hz (@ 26 db below peak power output:

500 Hz BW 2 carriers 46.875 Baud 4FSK or 93.75 baud PSK using TCM 4PSK, 8PSK or 16PSK

1600 Hz BW 8 carriers 46.875 Baud 4FSK or 93.75 baud PSK using TCM 4PSK, 8PSK or 16PSK

WINMOR is not optimized for keyboarding or "chat" mode applications though this may be possible with the appropriate user client.

4.1 Error Correcting Mechanisms

WINMOR employs a number of powerful error detecting and correcting mechanisms which are specifically adapted to the types of errors found in HF communications using popular FSK and PSK modulation schemes. This section outlines the error correction approach used.

Normally error correction is done in terms of "layers" for improved effectiveness and efficiency. The following briefly describes these layers and how they are used in WINMOR.

4.1.1. Outer Sumcheck Laver

This layer applies a standard CRC sumcheck calculation on the "corrected" data. It insures to a very high probability that the corrections are indeed correct and the data matches that which was transmitted. For Connect request frames, ID frames and all data frames a 16 bit CRC Polynomial of $x^16 + x^12 + x^5 + 1$ is used. For short coded control and ACK frames an 8 bit CRC polynomial of $x^8 + x^7 + x^3 + x^2 + 1$ is used.

4.1.2 Reed Solomon Layer

Reed-Solomon (R-S) FEC appends parity blocks (characters) to an uncoded message which are used to detect and correct errors. The total message size (with parity) must be equal to $2^n - 1$ where n is the character size in bits. WINMOR uses a single 8 bit character size. Shortened R-S codes (where sender and receiver agree a priori to the message size and not transmit the "fill" part of the message) are used as is typical in many R-S applications.

For data frames the Reed Solomon layer is actually implemented in two formats. The first format is what is called weak R-S where a relatively few parity characters are appended to the message. This weak R-S format is usually sufficient to correct the frame under most conditions. If a data frame must be repeated (reciever did not ACK) then the second strong R-S format is used which transmits *just* the parity characters of a more robust R-S code. These parity characters are then used along with the prior sent data (ignoring the weak R-S Parity bytes) to attempt to correct the original message part of the first weak R-S format. These two formats are alternated with each repeat of a data frame.

4.1.3 Viterbi Encoded TCM Layer

The next layer uses what is called Viterbi Encoded Pragmatic Trellis Coded Modulation. (See appendix B) This is used on all PSK modes but is not used on FSK. This scheme reaches to within about .2 db of the theoretical coding gain of the best similar length Trellis codes but uses a standard Viterbi encoder/decoder (NASA Voyager R=1/2, K=7). In TCM a single bit is added to each PSK symbol doubling the number of phases. The gain provided by the code exceeds that lost by the tighter spaced phase constellation by typically about 3 dB giving essentially a 3dB power improvement with no change in payload throughput or bandwidth. The layered use of the Viterbi inner encoding and R-S outer encoding is common in many advanced error correcting schemes.

4.1.4 Memory ARQ

The final layer used is what is commonly called memory ARQ (Automatic Retry reQuest). If decoding on the received data using the above layers is not sucessful Memory ARQ averages the received demodulated (soft) symbol values (frequency or phase/magnitude) on a symbol by symbol basis and attempts a decode (using the above layers) on the averaged values. This can be effective in very weak signal conditions. Memory ARQ is done only for data frames and is applied to both the weak R-S and strong R-S data formats.

5.0 Physical Layer Protocol Description:

The protocol requires the following hardware:

- 1) Radio connection. This *SHOULD* be a single sideband (SSB) transceiver capable of transmitting Upper sideband low distortion audio in the range of 600-2400Hz. When SSB transmission is used it *MUST* always done using Upper Sideband (USB). Other modulation schemes (e.g. NBFM) *MAY* be used in some applications.
- 2) Radio Frequency accuracy: If SSB modulation is used the radio MUST be able to be set to within ± 100 Hz of a specific (published) frequency.
- 3) Frequency Drift: If SSB modulation is used the radio frequency *MUST* have a short term drift of < .5Hz/Second over any 5 second period.
- 4) The transceiver MUST have a Receive to transmit switching time of < 100 ms and a Transmit to Receive switching time of < 100 ms
- 5) The audio for the protocol *MAY* be generated using a standard PC sound card and appropriate software.
- 6) On Radios with built in sound card interfaces (e.g. Icom 7200) it is possible to use the radio's built in sound card to send and receive SSB audio.

- 7) The sound card capture device (receiving data) *MUST* be able to support a real or interpolated sampling frequency of 48000Hz +/- .1% (+/-1000 ppm)
- 8) The sound card playback Device (transmitting data) MUST be able to support a real or interpolated sampling frequency of 12000 Hz +/-.1% (+/- 1000 ppm)
- 9) The processor or PC used to implement the protocol *MUST* be able to complete the decoding of any frame and respond with the appropriate response in 500 ms or less. (this is currently estimated to equate to a Pentium/Celeron class processor of 500 MHz or above) It may be possible to reduce the PC requirement in the future at the expense of session throughput.

6.0 Data Link Layer Protocol Description:

6.1 Definitions:

Information Sending Station (ISS) := the station currently sending data to the other station. The ISS MUST only send data or control frames.

Information Receiving Station (IRS) := the station currently receiving data or commands from the other station. The IRS *MUST* only send Ack or control frames.

Carrier := one of the modulation carriers. There are either 4 or 6 modulation modes supported depending on the desired session bandwidth:

- 1) 500Hz BW
 - a. Modes: 4PSK TCM, 8PSK TCM, 16PSK TCM
 - 2 Carriers at 1406.25 Hz and 1593.75 Hz
 - b. Mode 4FSK
 - 2 groups of 1of 4 Carriers. (2 carriers active simultaneously) Group 1: 1312.5, 1358.375, 1406.25 and 1453.125 Hz Group 2: 1546.875, 1593.75, 1640.625 and 1687.5 Hz
- 2) 1600 Hz BW
 - a. Modes: 8 carrier 4PSK TCM, 8PSK TCM, 16PSK TCM 8 Carriers at 843.75, 1031.25, 1218.75, 1406.25, 1593.75, 1781.25, 1968.75 and 2156.25 Hz
 - b. Mode 8 carrier 4FSK
 - 8 groups of 1of 4 Carriers. (8 carriers active simultaneously)
 Group 1: 750.0, 796.875, 843.75 and 890.625 Hz
 Group 2: 937.5, 984.375, 1031.25 and 1078.125 Hz
 Group 3: 1125.0, 1171.875, 1218.75 and 1265.625 Hz
 Group 4: 1312.5, 1358.375, 1406.25 and 1453.125 Hz
 Group 5: 1546.875, 1593.75, 1640.625 and 1687.5 Hz
 Group 6: 1734.375, 1781.25, 1828.125 and 1875.0 Hz
 Group 7: 1921.875, 1968.75, 2015.625 and 2062.5 Hz
 Group 8: 2109.775, 2156.25, 2203.125 and 2250.0 Hz
 - c. Modes: 2 carrier 4PSK TCM
 - 2 Carriers at 1406.25 Hz and 1593.75 Hz
 - d. Mode 2 carrier 4FSK

2 groups of 1of 4 Carriers. (2 carriers active simultaneously) Group 1: 1312.5, 1358.375, 1406.25 and 1453.125 Hz Group 2: 1546.875, 1593.75, 1640.625 and 1687.5 Hz

Pilot := Leader of the Frame. The Pilot is used to enable rapid identification of a transmission, to DSP tune the receiving station accurately, to establish symbol and frame sync and to indicate the frame type. The single carrier of 1500.00 +/- .1% is sent at full modulation strength (Maximum PEP value) to maximize S/N during the Pilot interval

 $Pilot := P_{tun} \& P_{fsync} \& P_{ftv}$

 P_{tun} is the tuning pilot. P_{fsync} is the frame sync identifier. P_{fty} is the frame type identifier. P_{tun} & P_{fsync} are always sent using single carrier DBPSK modulation with a root raised cosine envelope encoding for robustness.

 $P_{tun} := 24$ adjacent symbols of the pilot carrier (1500.0 Hz) alternating phase on each symbol. The tuning signal MAY be extended up to 16 symbols (170.66 ms) for transceivers with slow R>T switching or slow VOX PTT response if using VOX. $P_{fsync} := Frame$ sync symbol consisting of one symbol of the same phase as the immediately preceding P_{tun} symbol. The P_{fsync} symbol serves as the frame sync symbol for the following P_{tfy} symbols.

 $P_{\text{fty}} := 4$ sequential 4FSK symbols. These 4 symbols encode the 4 bit frame type with an extended 8,4 hamming code.

Frame := a packet of information. A frame is composed of a Pilot & Data. Frames are identified by the syntax F_{xyz} where xyz is the frame descriptor.

Symbol := A symbol is one modulation burst of data. The symbol rate is 93.75 symbols per second (baud) +/- .1% for PSK modes (93.75 = 12000/128). For 4FSK modes the symbol rate is 46.875 symbols per second (baud) +/- .1% (12000/256) Pilot symbols consist of a single carrier with a root raised cosine envelope weighted at the maximum PEP value. Data and control symbols consist of:

- 1) 2 carrier PSK modulated with a root raised cosine envelope. Each carrier is weighted 53% of the pilot carrier
- 2) 2 Carrier 4FSK (one of 4 tones). Each carrier is weighted at 50% of the weight of the pilot carrier.
- 3) 8 simultaneous carriers PSK modulated with a root raised cosine envelope. Each carrier is weighted at 16.7% of the maximum PEP value.
 - 4) 8 simultaneous carriers each 4FSK (one of 4 tones). Each carrier weighted at 14.3% of the maximum PEP value.

(Note: these carrier weightings are combined with limited soft and hard clipping to reduce the crest factor. The percentages above are subject to change.

For PSK modes the initial symbol following the Pilot is the reference symbol S_r . This establishes the reference for the next Differential symbol. The S_r symbol carries no

information but establishes the reference phase for each carrier. The reference phase for each carrier need not be the same as a mechanism of reducing the crest factor. There is no reference symbol for 4FSK modes.

Byte := the number of contiguous symbols to make one byte. After the frame type data all frames send an integral number of bytes with a total length determined by the frame type.

Symbol Modulation: With the exception of the pilot described above all data symbols and all carriers *MUST* use the same modulation scheme. The supported schemes *MUST* include Viterbi encode Trellis Coded Modulation (Pragmatic TCM) PSK (differential phase shift keying) and 4FSK.

SessionID := a 2 byte integer B_{sid} defined as CRC16 (Calling sign & Target call sign) The session ID dramatically reduces the chances of a session contamination by a remote non connected but audible rogue signal. The Session ID is used in the computation of the sum check but is only sent specifically on data frames. Specific encoding example TBD.

6.2 Frame Types:

The following frame types *MUST* be supported. For Detailed frame parameters see the spread sheet in Appendix A.

6.2.1 Control frames:

 $\mathbf{F_{crq}}$ Connect ReQuest frame: 2 Car 4FSK = type 0

Sent by the station initiating the connection (Client). Contains call signs of calling and target stations and 2 byte sumcheck. The session Bandwidth is set by the answering (Server) station.

F_{crq} Encoding:

 $F_{crq} := Pilot \& S_r \& B_{data} \& B_{sch} \& B_{scl} \& B_{RS}$

 B_{data} := Calling call sign & Remote call sign. Callsigns are packed to 12 byte array of 6 bit characters and must be A-Z, 0-9 with an optional –ssid of 0 – 15. Function FormatCallsToByte is used to pack the 12 byte array.

 B_{sch} is the high byte of the CRC16 sum check of B_{data} B_{scl} is the low byte of the CRC16 sum check of B_{data} B_{RS} is the 14 check parity bytes from a shortened RS (255,241) code correcting up to 7 bytes

 $F_{crq}\, Total$ payload (2 carriers) of 28 bytes including CRC16 and RS correction check bytes and is always sent using 2 carrier 4FSK modulation (2 user bits per symbol)

 $\mathbf{F_{ccf}}$ Coded Control Frame (2 Car 4FSK = type 1)

Handles the following sub types by 1 byte code in the control frame:

 F_{drq} Disconnect Request (code HFF)

F_{idl} Idle Code H00

 F_{brk} Break (sent by the IRS to stop the ISS from sending data and go to the IRStoISSe state) Code(HAA)

 F_{rps} Request Packet Sequence number (sent by the ISS to get the last correctly sequenced packet from the IRS in preparation for a mode shift. Code(H11)

 $F_{ccf} := Pilot \& B_{cod} \& B_{sc8} \& B_{RS}$

 B_{cod} is the 8 bit code value 00 - FF

 B_{sc8} is the 8 bit sum check of $B_{sid} \& B_{cod}$

 B_{RS} is the parity bytes from a shortened RS (255,249) correcting up to 3 bytes.

6.2.2 ACK Frames:

 $F_{ack} := Ack (2 Car 4FSK FEC = type 2)$

Handles ACK for all carrier modes

 F_{ack} := Pilot & B_{ack} & B_{sc8} & B_{RS}

 B_{ack} is a 8 bit field. The 8 bits correspond to the ACK for each carrier. The LSbit represents the highest carrier frequency.

 B_{sc8} is the 8 bit sum check of $B_{sid} \& B_{ack}$

 B_{RS} is the parity bytes from a shortened RS (255,249) correcting up to 3 bytes.

(note the Coded control and ACK frames have the same length but different frame types)

6.2.3 Data frames:

Data frames consists of four modulation schemes each supporting two data types:

- 1: Data + weak Reed-Solomon FEC
- 2: Extended Reed-Solomon FEC

(the extended RS code is used to correct additional errors)

Data is first sent as a type 1 data frame (Data + Weak R-S encoding) if the data is not decoded correctly it is sent again as a type 2 (strong R-S Parity only). This strong R-S parity is appended to the *data* portion of the *previous* Data + Weak R-S Encoding (the Weak R-S parity bytes are discarded) and a new more robust R-S decode is attempted. Data frames alternate between Type 1 and Type 2 until there is a successful decode. Data type 2 is distinguished from type 1 by using the ones compliment of the Session ID. Some form of data summation (analog memory ARQ) *MAY* be used to average repeated Data + Weak R-S or Strong R-S Parity only to improve decoding performance.

F_{d16TCM} 16PSK Pragmatic TCM

Encoding for type 1 (Data + weak Reed-Solomon error correction):

 $\textbf{F}_{\textbf{d16TCM}} := \text{Pilot \& S_r \& B_{sid} \& B_{psn} \& B_{bc} \& B_{data} \& B_{pad} \& B_{sch} \& B_{scl} \& B_{RS} \& B_{00} Where:}$

 B_{sid} is the 16 bit Session ID.

 B_{psn} is the Packet Sequence Number (1 to 255 mod 256. PSN 0 is reserved)

 B_{bc} is the byte count (the number of bytes in B_{data} only)

B_{data} is the data bytes (up to 96 bytes)

 B_{pad} is remaining $B_{00}\,\text{if}$ required to fill $B_{\text{data}}\,$ frame if $\,<\!96$ bytes are used

B_{sch} is the high byte of the CRC16 sum check per carrier

 B_{scl} is the low byte of the CRC16 sum check per carrier

 B_{RS} is the Reed Solomon 20 byte RS weak parity using a shortened RS code of 235,255 (10 error correcting)

 B_{00} is a one byte fill necessary to complete the 21 bytes due to the 3 bits/symbol

Encoding for type 2 (Extended RS Parity):

 $\mathbf{F_{d16TCM}} := \text{Pilot \& } \mathbf{S_r} \& \mathbf{B_{sid}} \& \mathbf{B_{RSX}} \& \mathbf{B_{00}}$

Where:

 B_{sid} is the ones compliment of the 16 bit Session ID.

B_{RSX} are the 120 extended Reed Solomon Parity

 B_{00} is a one byte fill necessary to complete the 121 bytes due to the 3

bits/symbol

Data Frames using this modulation mode:

Two carrier 16PSK, 500 Hz BW

Eight carrier 16PSK, 1600 Hz BW

F_{d8TCM} 8PSK Pragmatic TCM

Encoding for type 1 (Data + weak Reed-Solomon error correction):

 $\mathbf{F_{d8TCM}} := \text{Pilot \& } \mathbf{S_r} \& \mathbf{B_{sid}} \& \mathbf{B_{psn}} \& \mathbf{B_{bc}} \& \mathbf{B_{data}} \& \mathbf{B_{pad}} \& \mathbf{B_{sch}} \& \mathbf{B_{scl}} \& \mathbf{B_{RS}} \text{ Where:}$

 B_{sid} is the 16 bit Session ID.

 B_{psn} is the Packet Sequence Number (1 to 255 mod 256. PSN 0 is reserved)

 B_{bc} is the byte count (the number of bytes in B_{data} only)

 B_{data} is the data bytes (up to 64 bytes)

 B_{pad} is remaining $B_{00}\, \text{if required to fill } B_{data}\,$ frame if $\,<$ 64 bytes are used

 B_{sch} is the high byte of the CRC16 sum check per carrier

 B_{scl} is the low byte of the CRC16 sum check per carrier

 B_{RS} is the Reed Solomon 12 byte RS weak parity using a shortened RS code of 243,255 (6 error correcting)

Encoding for type 2 (Extended RS Parity): $\mathbf{F_{d8TCM}} := \text{Pilot \& S}_r \& B_{sid} \& B_{RSX}$ Where:

B_{sid} is the ones compliment of the 16 bit Session ID.

 B_{RSX} are the 80 extended Reed Solomon Parity bytes *only* of a strong RS code 175,255 (40 error correcting).

Data Frames using this modulation mode:

Two carrier 8PSK, 500 Hz BW Eight carrier 8PSK, 1600 Hz BW

F_{d4TCM} 4PSK Pragmatic TCM

Encoding for type 1 (Data + weak Reed-Solomon error correction):

 $\textbf{F}_{\textbf{d4TCM}} := \text{Pilot \& } S_r \ \& \ B_{sid} \ \& \ B_{psn} \ \& \ B_{bc} \ \& \ B_{data} \ \& \ B_{pad} \ \& \ B_{sch} \ \& \ B_{scl} \ \& \ B_{RS} \ Where:$

 B_{sid} is the 16 bit Session ID.

 B_{psn} is the Packet Sequence Number (1 to 255 mod 256. PSN 0 is reserved)

 B_{bc} is the byte count (the number of bytes in B_{data} only)

 B_{data} is the data bytes (up to 30 bytes)

 B_{pad} is remaining B_{00} if required to fill B_{data} frame if < 30 bytes are used

B_{sch} is the high byte of the CRC16 sum check per carrier

B_{scl} is the low byte of the CRC16 sum check per carrier

 B_{RS} is the Reed Solomon 6 byte RS weak parity using a shortened RS code of 249,255 (3 error correcting)

Encoding for type 2 (Extended RS Parity): $\mathbf{F_{d4TCM}} := \text{Pilot \& S}_r \& B_{sid} \& B_{RSX}$ Where:

 B_{sid} is the ones compliment of the 16 bit Session ID.

 B_{RSX} are the 40 extended Reed Solomon Parity bytes *only* of a strong RS code 215,255 (20 error correcting).

Data Frames using this modulation mode:

Two carrier 4PSK, 500 Hz BW Eight carrier 4PSK, 1600 Hz BW

F_{d4FSK} 4FSK modulation @ 46.875 baud

Encoding for type 1 (Data + weak Reed-Solomon error correction):

 $F_{d4FSK} := \text{Pilot \& } B_{sid} \text{ \& } B_{psn} \text{ \& } B_{bc} \text{ \& } B_{data} \text{ \& } B_{pad} \text{ \& } B_{sch} \text{ \& } B_{scl} \text{ \& } B_{RS}$ Where:

 B_{sid} is the 16 bit Session ID.

B_{psn} is the Packet Sequence Number (0 to 255 mod 256)

 B_{bc} is the byte count (the number of bytes in B_{data} only)

B_{data} is the data bytes (up to 16 bytes/carrier)

 B_{pad} is remaining B_{00} if required to fill B_{data} frame if < 16 bytes are used

 B_{sch} is the high byte of the CRC16 sum check per carrier

B_{scl} is the low byte of the CRC16 sum check per carrier

 B_{RS} is the weak Reed Solomon 16 byte check sum using a shortened RS code of 239,255 (8 error correcting)

 $\mathbf{F_{d4FSK}}$ Encoding for type 2 (Extended RS Parity):

 $\mathbf{F_{d4FSK}} := \text{Pilot \& B}_{\text{sid}} \& \mathbf{B}_{\text{RSX}} \text{ Where:}$

 B_{sid} is the ones compliment of the 16 bit Session ID.

 B_{RSX} are the 36 extended Reed Solomon Parity bytes *only* of a strong RS code 219,255 (18 error correcting).

For 4FSK each carrier group of 4 tones is separated by 4 x 46.875 or 187.5 Hz.

Data Frames using this modulation mode:

Two carrier 4FSK, 500 Hz BW Eight carrier 4FSK, 1600 Hz BW

6.3 Protocol Details

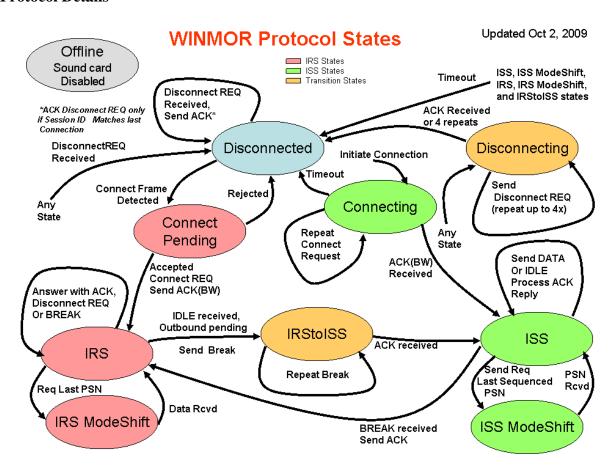


Fig 6 – 1 Simplified Protocol State diagram:

6.3.1 Protocol Rules: (refer to state diagram Fig 6-1)

- 1) Offline.
 - a. When WINMOR is in the Offline State it may send no data, receive no data and the sound card is deactivated and sound card resources released.
- 2) All other states, events, actions and state sequencing details are shown in the Protocol rules of Appendix C.

7.0 Example Forwarding Scenarios:

7.1 A typical Forwarding Session: (no errors or repeats)

CLI	ENT	SERVER	
State CONNECTING	Frame Sent CONREQ	State	Frame Sent
		DISCONNECTED	ACK (BW)
ISS	IDLE	IRS	BREAK
ISS	ACK	IRStoISS	DATA
IRS	ACK		
IRS	ACK	ISS	DATA
		ISS	DATA
IRS	ACK		
IRStoISS	BREAK	ISS	IDLE (end of data)
ISS	DATA	ISS	ACK
		IRS	ACK
ISS	DATA		
		IRS	ACK
ISS	IDLE (end of data)		
DISCONNECTING	DIS REQ	IRS	ACK
DISCONNECTED	-	DISCONNECTED	ACK

Appendix A: WINMOR Mode Rate Worksheet

(details of frame construction for all modes, all bandwidths)

Mode Description Mode Mode Description Mode Description Mode Description Mode Mode Description	Info Samp # of -BW Raw Leader OH/Car RS-FEC Frame Frame Rx+1x Tot Cycle Intrographut Introgram Info Samp # of -BW Raw Leader OH/Car (Sym) Sym) Sym) Second Second Second Second Second Second Intrographut Intrographut Introgram Intergram	WININGS 94 Baud Mode Rate Wolksheet 300, 1300 nz BW Modes	Kate v	2	3	5	3	1					Revised: 10/13/2003		200	200	KICK MUEUIIIIB, NIVOND	O LONG		
Notes: 1) The AFSK mode was modified for lower user data and higher RS FEC and now runs shower than the AFSK modes was modified for lower user data and higher RS FEC and now runs shower than the AFSK modes was modified for lower user data and higher RS FEC and now runs shower than the AFSK modes was modified for lower user data and higher RS FEC and now runs shower than the AFSK modes was modified for lower user data and higher RS FEC and now runs shower than the AFSK modes was modified for lower user data and higher RS FEC and now runs shower than the AFSK modes use pagement. Testing on the Box selections may changed for lower user data and higher RS FEC and now runs shower than the AFSK modes use pagement. Testing on the Box selections may change the selections may change the selections may change the selections may change where these selections may change the selections may change where these selections may change where the selections are changed to relating and higher RS received by the selection of the selections and change where the selections are changed where the selections are changed where the selection changed the selections are changed where the selection changed the selections are changed where the selection changed of the selection changed the selections are changed the selection	Notes: 1] The AFSK mode was modified for lower user data and higher RS FEC and now runs slower than 10 HSAm Series and selections may change based on testing 1 10 HS MS series with restriction and the processing latency.			Samp/		# of		3aw L	eader	0H/Car	PL/Car	- RS-FEC/	Frame	Frame		Rx+Tx	Tot Cycle		Net max	
Second Research Second Res	Second Registration	Mode Description	b/Sym	Sym		car () zH/sdc	Sym)				Length	Length	ACK 1	o	Len		Throughp	ıt
3 128 9375 8 1500 150 33 16 256 56 361 3851 0633 0.3 4 833 12712 9534 1 128 9375 8 1500 0.50 33 24 256 48 361 3681 0.633 0.3 4 919 3993 2295 2 256 46 88 8 1500 0.50 16 24 24 48 361 3681 0.633 0.3 4 919 3993 2292 3 128 9375 2 450 0.50 33 34 34 48 246 64 168 3.881 0.683 0.3 4 919 3993 2282 4 25 256 46 88 2 450 0.42 16 24 24 24 36 3.881 0.683 0.3 4 919 391 2722 5 2 256 46 88 2 450 0.42 16 24 24 24 36 3.881 0.683 0.3 4 919 376 2722 5 2 256 46 88 2 450 0.42 16 0.4 4 12 32 0.683 0.3 4 919 376 2724 7 2 256 46 88 2 450 0.42 16 0.4 4 12 22 0.683 0.3 4 919 376 2724 8 2 2 256 46 88 2 450 0.42 16 0 4 12 32 0.683 0.3 4 919 376 2724 8 2 2 256 46 88 2 450 0.42 16 0 4 12 32 0.683 0.3 4 919 376 2724 9 2 2 256 46 88 2 450 0.42 16 0 4 12 32 0.683 0.3 4 919 376 2724 1 2 3 4 3 4 4 4 4 4 4 4	128 93.75 8 1500 150 33 16 256 56 361 3861 0683 0.3 4 833 41712 9534 1												(sym)	(sec)	(sec)	(sec)	(sec)	(bits/sec) (byt/min	(wrds/min)7
2 128 9375 8 1500 100 33 24 26 48 369 3861 0633 03 4 973 3974 6356 3 128 9376 8 1500 050 7 16 24 64 64 1 64 1 369 369 058 03 4 979 3993 2298 3 128 9375 2 450 050 7 16 25 46 64 64 1 64 1 88 369 0 18 3 4 397 224.2 1882 2 2 265 46 88 2 2 450 0.42 33 24 24 64 88 369 368 0 83 0 3 4 833 371 8 1882 2 2 26 46 88 2 2 450 0.42 33 24 64 28 369 369 0 83 0 3 4 873 371 8 1882 2 2 26 46 88 2 2 450 0.42 16 2 4 64 168 369 0 3 2 860 3 3 4 67 7 73 2 2 26 46 88 2 450 0.42 16 0 4 4 12 2 3 0 683 2 2 26 46 88 2 450 0.42 16 0 4 4 12 32 0 683 2 2 26 46 88 2 450 0.42 16 0 0 4 4 12 32 0 683 2 3 450 0 42 16 0 0 4 12 10 16 24 12 10 10 10 10 10 10 10 10 10 10 10 10 10	1 128 9375 8 1500 100 33 24 266 48 361 063 0 3 4491 2592 3093 2228 3 128 9376 8 1500 0 50 7 16 24 64 64 1 64 1 68 364 0 683 0 3 4 567 2242 1682 3 128 9375 2 450 0 50 7 16 24 64 64 1 64 1 68 364 0 683 0 3 4 567 2242 1682 2 12 64 68 2 2 450 0 42 33 24 64 64 64 168 364 0 683 0 3 4 667 2242 1682 2 12 64 68 2 2 450 0 42 33 2 44 24 48 369 3 89 0 3 4 89 3 371 8 128 9375 2 2 450 0 42 3 3 2 4 2 4 64 168 3 69 0 3 3 4 67 7 724 2 189 1 69 1 69 1 69 1 69 1 69 1 69 1 69	8 Car 16PSK Prag TCM + RS	3	128			1500	1.50	33	16						0		-		
1 128 9375 8 1500 050 7 18 24 64 168 3 194 0 683 0 3 4 1919 3903 2928 3 128 9375 2 450 0 1	1 128 937 5 8 1500 0 507 16 24 6 4 6 18 36 9 39.0 0 683 0 3 4 567 2242 1682 2 128 937 5 2 450 0 150 7 16 256 6 56 56 1 361 3841 0 683 0 3 4 567 2242 1682 2 128 937 5 2 450 0 150 7 3 3 16 256 5 6 5 1 381 0 683 0 3 4 833 3 178 2383 2 128 937 5 2 450 0 10 83 33 24 256 4 8 361 0 683 0 3 4 833 3 178 2383 2 128 937 6 2 450 0 10 8 3 3 3 2 4 2 56 5 6 5 6 1 381 0 683 0 3 4 833 3 178 2 1899 2 128 937 6 2 450 0 10 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 Car 8PSK Prag TCM + RS	2	128			1500	1.00	33	24										
2 256 46 88 1500 0 56/T 15 256 46 88 2 450 0 105/T 15 256 46 361 364 0 683 0 3 4 567 224 2 1682 K) HRS 2 256 46 88 2 450 0 42 33 46 24 4 36 361 363 0 3 4 919 276 732 K) HRS 2 2 256 46 88 2 450 0 42 16 24 24 4 6 4 18 361 363 0 3 4 919 276 732 K) HRS 2 2 256 46 88 2 450 0 42 16 24 24 24 18 361 363 0 3 3 2 860 33 6 222 K) HRS 2 2 256 46 88 2 450 0 42 16 2 4 24 24 18 361 363 0 3 3 2 860 33 6 222 K) HRS 2 2 256 46 88 2 450 0 42 16 2 4 24 24 18 187 0 683 0 3 2 860 33 6 222 K) HRS 2 2 256 46 88 2 450 0 42 16 0 4 12 32 0 683 K) HRS 2 2 256 46 88 2 450 0 42 16 0 4 12 32 0 683 K) HRS 2 2 256 46 88 2 450 0 42 16 0 4 12 32 0 683 K) HRS 3 2 450 0 42 16 0 4 12 32 0 683 K) HRS 3 2 450 0 42 16 0 4 12 32 0 683 K) HRS 4 2 45 8 2 450 0 42 16 0 4 12 32 0 683 K) HRS 5 2 45 8 8 2 450 0 42 16 0 2 8 28 72 1556 K) HRS 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 256 46 88 8 150 0 56 7 15 24 2 66 361 3854 0 683 0 3 4,567 224 2 1682 2 128 93.75 2 450 0 128 33 3 16 256 56 361 3851 0 683 0 3 4,893 3178 2383 2 128 93.75 2 450 0 82 33 3 16 24 26 48 361 3851 0 683 0 3 4,893 3179 158 2 256 46 88 2 450 0 42 16 24 24 24 18 369 3 936 0 683 0 3 4,567 5 26 2 256 46 88 2 450 0 42 16 24 24 24 18 369 3 936 0 683 0 3 4,567 5 66 2 256 46 88 2 450 0 42 16 2 4 24 24 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 4 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 4 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 4 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 4 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 4 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 4 12 32 0 683 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 0 683 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 150 0 683 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 150 0 683 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 150 0 683 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 150 0 683 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 10 0 83 2 2 56 46 88 2 450 0 42 16 0 2 8 28 12 12 12 12 12 10 0 83 2 2 56 46 88 2 450 0 42 16 0 2 4 12 10 0 4 12 12 12 10 0 83 2 2 56 46 88 2 450 0 42 16 0 2 4 12 10 0 4 12 12 12 10 0 83 2 3 56 Note 2 4 10 0 10 10 10 10 10 10 10 10 10 10 10 1	8 Car 4PSK Prag TCM + RS	-	128			1500	0.50	33	48										
\$ 1 128 9 3 7 5 2 450 125 33 14 5 26 56 56 361 3851 0633 0 3 4833 3178 2933 2 172 9 3 7 7 5 2 450 0 42 33 42 24 56 48 369 3936 0633 0 3 4 593 2119 1589 2 2 256 46 88 2 450 0 42 16 24 64 16 3 63 593 0 683 0 3 4 567 561 420 K/+RS 2 2 26 46 88 2 450 0 42 16 0 2 2 8 8 1877 0 683 0 3 2 860 336 252 K/+RS 2 2 26 46 88 2 450 0 42 16 0 2 2 8 8 1877 0 683 0 3 2 860 336 252 RS 2 2 26 46 88 2 450 0 42 16 0 2 8 8 1877 0 683 0 3 2 860 336 252 RS 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 178 93 75 2 450 1425 33 148 246 6 56 56 150 150 3 84 38 3178 2833 2 172 93 77 2 450 042 33 424 256 448 369 395 0.83 0.3 4 833 2119 1589 2 2 256 45 88 2 450 042 16 24 64 64 168 369 0.3 936 0.83 0.3 4 597 775 2 2 256 46 88 2 450 042 16 24 24 24 24 8 187 0.83 0.3 4 567 561 420 R/S 2 2 256 46 88 2 450 042 16 0 2 28 78 8 187 0.83 0.3 2.860 3.86 3.86 R/S 2 2 256 46 88 2 450 042 16 0 2 28 78 8 187 0.83 0.3 2.860 3.86 R/S 2 2 256 46 88 2 450 042 16 0 4 4 12 32 0.83 R/S 2 2 256 46 88 2 450 0.42 16 0 4 4 12 32 0.83 R/S 3 2 2 256 46 88 2 450 0.42 16 0 0 4 12 32 0.83 R/S 3 2 2 256 46 88 2 450 0.42 16 0 0 4 12 32 0.83 R/S 3 2 2 256 46 88 2 450 0.42 16 0 0 4 12 32 0.83 R/S 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 Car 4FSK +RS	2	256			1500	0.50	16	24										
2 126 46 88 2 450 042 33 48 46 76 68 361 3851 0683 03 4 833 2119 1689 2 256 46 88 2 450 042 16 24 64 64 168 1877 0683 03 2 860 575 2 256 46 88 2 450 042 16 24 64 68 1877 0683 03 2 860 356 252 2 256 46 88 2 450 042 16 24 6 2 4 6 8 1877 0683 03 2 860 356 252 2 256 46 88 2 450 042 16 24 16 2 4 12 32 083 2 2 256 46 88 2 450 042 16 0 4 12 32 083 2 2 256 46 88 2 450 042 16 0 4 12 32 083 2 2 256 46 88 2 450 042 16 0 4 12 32 083 2 2 256 46 88 2 450 0 4 16 0 4 12 32 083 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2 Car 16PSK Prag TCM + RS	3	128			450	1.25	33	16										
1 128 3375 2 450 0.42 33 48 240 48 369 3936 0.683 0.3 4.919 976 732 2 256 46.88 2 450 0.42 16 24 64 64 18 3584 0.683 0.3 2.860 336 2.52 2 256 46.88 2 450 0.42 16 0 28 28 77 1.536 0.683 0.3 2.860 336 2.52 2 256 46.88 2 450 0.42 16 0 28 28 77 1.536 0.683 0.3 2.860 336 2.52 2 256 46.88 2 450 0.42 16 0 4 12 32 0.683 0.683 0.683 0.8 3 2 256 46.88 2 450 0.42 16 0 4 12 32 0.683 0.683 0.683 0.8 3 3 4 3 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 128 9375 2 456 0 42 33 48 240 48 369 683 0 3 4 919 976 732 2 256 46 88 2 2 450 0 42 16 24 64 64 168 369 0 3 2 860 336 252 RS 2 256 46 88 2 2 450 0 42 16 0 2 8 28 72 1536 RS 2 256 46 88 2 2 450 0 42 16 0 2 8 28 72 1536 RS 2 256 46 88 2 450 0 42 16 0 4 4 12 32 0.683 RS 2 2 256 46 88 2 2 450 0 42 16 0 4 4 12 32 0.683 Robis 0-16) 0 RS 2 256 46 88 2 2 450 0 142 16 0 4 4 12 32 0.683 RS 3 2 2 256 46 88 2 2 450 0 142 16 0 4 4 12 32 0.683 RS 3 2 2 256 46 88 2 2 450 0 142 16 0 4 4 12 32 0.683 RS 3 2 2 256 46 88 2 2 450 0 142 16 0 4 4 12 32 0.683 RS 3 2 2 256 46 88 2 2 450 0 142 16 0 4 4 12 32 0.683 RS 3 2 2 256 46 88 2 2 450 0 142 16 0 142 16 0 142 12 32 0.683 Robis 0-16	2 Car 8PSK Prag TCM + RS	2	128			450	0.83	33	24										
2 256 46 88 2 450 0.42 16 24 64 64 168 3 544 0.83 0.3 4.567 56 1 420	2 256 46 88 2 450 0.42 16 24 24 24 24 24 24 24 2	2 Car 4PSK Prag TCM + RS	-	128			450	0.42	33	48										
2 256 46 88 2 450 0.42 16 24 24 88 1870 0.683 3.2.860 336 252 SK + RS 2 2 56 46 88 2 450 0.42 16 0 28 28 72 1.536 3.2.860 336 252 SK + RS 2 2 56 46 88 2 450 0.42 16 0 4 12 32 0.683 3.2.860 336 252 SB symbols) 24 5 5 46 88 2 450 0.42 16 0 4 12 32 0.683 3.2.860 336 252 SB symbols 0-16 0 5 See Note 2 2 5 5 46 88 2 450 0.42 16 0 4 12 32 0.683 3.2.860 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 256 46 88 2 450 0.42 16 24 88 2 87 1536 0.3 2.860 336 252 256 46 88 2 450 0.42 16 0 28 28 28 28 2 72 1536 2 256 46.88 2 450 0.42 16 0 4 12 32 0.683	2 Car 4FSK +RS	2				450	0.42	16	24										
2 2 2 2 2 3 0-16) 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Short 2 Car 4FSK +RS	2				450	0.42	16	24						0	2			
2 2 2 3 0-16) 0 1	2 2 2 2 3 0-16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 Car Connect Request (4FSK) +RS	2				450	0.42	16	0					10					
2 24 24 25 24 26 20 20 20 20 20 20 20 20 20 20 20 20 20	2 24 24 24 24 24 24 24 24 24 24 24 24 24	2 Car Coded Control 4FSK + RS	2				450	0.42	16	0					000					
24 5 0.16) 0 0 0 0 0 13 13 17 17	24 5 0.16) 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1	2 Car ACK 4FSK +RS	2				450	0.42	16	J										
Notes: 1) Notes: 1)	Notes: 1) Notes: 1) Notes: 1) 13 14 14 15 17 17	(-laden or G37 cm, alden or Garden)	70																	
Notes: 1) Notes: 1) 13 14 44 16 17 17	Notes: 1) Notes: 1) (1) (2) (3) (3) (4) (4) (4) (6) (6) (7)	Leader Preamble (33.73D symbols)	1		:															
Notes: 1) Notes: 1) 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Notes: 1) Notes: 1) 3) 1) 1) 1) 1) 1) 1) 1) 1)	Leader extension (93.75B symbols 0-16)			See No	te 2														
Notes: 1) The 4FSK mode was modified for lower user data and higher RS FEC and now runs slower than the 4PSK mode. 2) Leader extension up to 16 symbols (171 ms) may be used for slow switchover Trancievers or VOX operated PTT 3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 2x4PSK, 2x4PSK, 2x4FSK ~ 22.1 speed range 50150 Hz BW Sessions: 8x16PSK, 2x8PSK, 2x4PSK, 2x4FSK ~ 5.6.1 speed range 5 All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to neceive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	Notes: 1) The 4FSK mode was modified for lower user data and higher RS FEC and now runs slower than the 4PSK mode. 2) Leader extension up to 16 symbols (111 ms) may be used for slow switchover Trancievers or VOX operated PTT 3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4PSK, 2x4PSK, 2x4PSK, 2x21Speed range 500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4PSK, 2x4FSK ~ 56.1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded lale frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trelits Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	Calculated Leader extension (ms)	0																	
Notes: 1) The 4FSK mode was modified for lower user data and higher RS FEC and now runs slower than the 4PSK mode. 2) Leader extension up to 16 symbols (171 ms) may be used for slow switchover Trancievers or VOX operated PTT 3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 8x4FSK, 2x4FSK ~ 22:1 speed range 500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Sever (answering) station using one of 2 coded idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX-TX switchover, sound card and CPU processing latency. 7) Word per minitude calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	Notes: 1) The 4FSK mode was modified for lower user data and higher RS FEC and now runs slower than the 4PSK mode. 2) Leader extension up to 16 symbols (171 ms) may be used for slow switchover Trancievers or VOX operated PTT 3) The above modes yield the following speed ranges depending on session bandwidth: 1500 Hz BW Sessions: 8x16PSK, 8x8PSK, 8x4PSK, 2x4PSK, 2x4FSK ~ 22.1 speed range 1500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4PSK, 2x4FSK ~ 26.1 speed range 4) Session BW is set by Sever answering) station using one of 2 coded lde frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.																			
2) Leader extension up to 16 symbols (171 ms) may be used for slow switchover Trancievers or VOX operated PTT 3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 8x4FSK ~ 26:1 speed range 500 Hz BW Sessions: 2x16PSK, 2x4PSK, 2x4FSK ~ 56:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded ldle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (INASA Voyager) Viterio Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per mininte calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	2) Leader extension up to 16 symbols (171 ms) may be used for slow switchover Trancievers or VOX operated PTT 3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 2x4PSK, 2x4PSK, 2x4FSK, 2x4FSK, 2x4FSK, 2x4FSK, 2x4FSK, 2x4FSK, 2x4FSK, 2x4FSK, 2x6FSK, 2x6FSK, 2x4FSK, 2x6FSK,		Notes:		4FSK mo	de was	modifie	ed for lo	wer user	data an	d higher	RS FEC 2	wou pue	runs slov	ver than	the 4P5	3K mode.			
3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 8x4FSK ~ 26:1 speed range 500 Hz BW Sessions: 2x16PSK, 2x4PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterii Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	3) The above modes yield the following speed ranges depending on session bandwidth: note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 2x4FSK, 2x4FSK, 2x4FSK ~ 2.5.1 speed range 500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4FSK, 2x4FSK ~ 5.6.1 speed range 4) Sossion BW is set by Server (answering) station using one of 2 coded dlef frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.			2) Lead	er extens	sion up	to 16 s	ymbols	(171 ms) may be	e used fo	ir slow swi	itchover 1	rancieve	irs or V	OX opera	ted PTT			
note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 8x4FSK ~ 2E.1 speed range 500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4PSK, 2x4FSK ~ 2E.1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx - Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	note these selections may change based on testing! 1500 Hz BW Sessions: 8x16PSK, 8x8PSK, 8x4PSK, 2x4FSK ~ 2.0:1 speed range 500 Hz BW Sessions: 2x16PSK, 2x8PSK, 2x4PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.			3) The	above m	odes y	eld the	following	beeds t	ranges c	Jependin	g on sess	ion band	width:						
1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 2x4FSK, 2x4FSK ~ 22.1 speed range 500 Hz BW Sessions: 2x16PSK, 2x4PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viteria Encoder/Decoder based on Phil Karnas Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	1500 Hz BW Sessions: 8x16PSK, 8x4PSK, 8x4FSK, 2x4FSK ~ 22:1 speed range 500 Hz BW Sessions: 2x16PSK, 2x4PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.			note th	ese sele	ctions	may ch	ande ba	sed on t	esting										
4) Session BW Sessions: 2x16PSK, 2x4PSK, 2x4PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit, transmit, transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	4) Session BW Sessions: 2x16PSK, 2x4PSK, 2x4FSK ~ 5.6:1 speed range 4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.			1500	Hz BW	Session	1S: 8x16	SPSK, 8	x8PSK,	8x4PSk	(, 8x4FS	K, 2x4PS	K, 2x4F5	3K ~ 22	1 spee	d range				
4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	4) Session BW is set by Server (answering) station using one of 2 coded Idle frames (500, or 1500 Hz) 5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Kams Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.			500 H	z BW Se	ssions	2×16P	SK, 2x	PSK, 2	K4PSK,	2x4FSk	(~5.6:1)	speed rai	nge						
5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX>TX switchover, sound card and CPU processing latency. The word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.	5) All PSK modes use pragmatic Trellis Code Modulation (one redundancy bit/symbol) and use the standard R=1/2, K=7 (NASA Voyager) Viterbi Encoder/Decoder based on Phil Karns Code. 6) Rx + Tx + O refers to the receive to transmit, transmit to receive plus software overhead delays and is typical for modern hardware. The protocol acutally measures the latency due to RX-TX switchover, sound card and CPU processing latency. 7) Word per minute calculation based on average word of 5 char + space and a 50% compression ratio (typical using B2 compression on mid to large messages). Short messages will be less.			4) Sess	ion BW	is set k	y Serve	ır (answ	ering) sta	ation usi	ng one o	of 2 coded	Idle fram	es (500,	or 1500) Hz)				
				5) All P	SK mode	es use	pragma	tic Trelli	s Code I	Modulati	on (one	redundanc	y bit/syn	nbol) and	use th	e standa	rd R=1/2, k	(=)		
				(NAS/	⁴ Voyage	er) Vite	rbi Enco	oder/Dec	oder ba	sed on F	hil Karn	s Code.								
					Tx + 0	refers t	o the rea	ceive to	transmit	, transn	nit to rece	eive plus s	oftware (overhead	delays	and is ty	pical for m	odern hard	ware.	
				The p	rotocol a	cutally	measu	res the	atency c	lue to R	X>TX swi	itchover, s	ound car	d and C	PU proc	sessing k	itency.			
mid to large messages). Short messages will be less.	mid to large messages). Short messages will be less.				d per min	ute cal	culation	based	on avera	ge word	of 5 cha	r + space	and a 50	% comp	ression	ratio (ty)	oical using	B2 compr	ession on	
				mid 1	to large n	nessag	les). Sh	nort mes	sages w	vill be let	SS.									

Appendix B: Pragmatic Trellis Code Modulation (PTCM)

Trellis code modulation is a combination of FEC encoding with PSK modulation used to improve the Bit error rate of uncoded PSK modulation. Pragmatic means using standard available encoders/decoders (e.g. Viterbi) in place of the slightly more optimized Ungerbroeck Trellis coded modulation encoder/decoders. Pragmatic TCM is within about .2 dB of the optimized Ungerbroeck code of the same constraint length over the typical bit error rates encountered.

Figure B-1 shows the block diagram of the PTCM encoder as employed in the WINMOR midrange speed mode (Trellis 8PSK). Similar schemes are used for the 4PSK and 16PSK modulation modes. In all cases the TCM adds one bit to the user symbol doubling the number of PSK phases per symbol.

WINMOR 8PSK Pragmatic Trellis Code Modulation (PTCM) Encoding

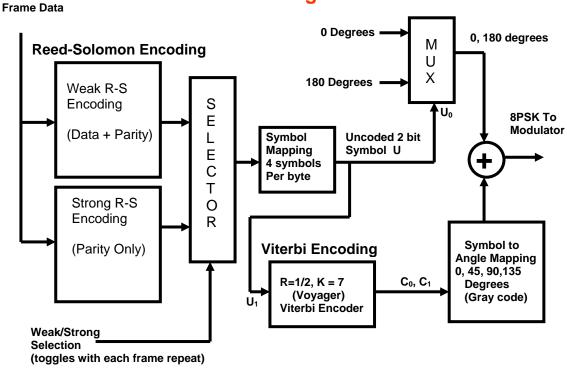


Figure B-1 WINMOR 8PSK PTCM Encoding

The encoding is summarized as follows:

A frame consists of 64 Payload (user data) bytes + 6 bytes of overhead. This frame is encoded using a weak R-S (Reed-Solomon) code (243,255) shortened to 82 bytes. This code will correct up to 6 byte errors in the 82 transmitted bytes. The resulting 82

bytes are mapped into 328 symbols of 2 bits each. The most significant symbol Bit U_0 is not FEC coded and selects an angle of 0 degrees ($U_0=0$) or 180 degrees ($U_0=1$) The least significant bit U_1 is fed into a standard (NASA Voyager) $R=\frac{1}{2}$, K=7 Viterbi Encoder which produces 2 FEC coded output bits C_0 and C_1 for each input bit U_1

 C_0 and C_1 are mapped to one of 4 phase values 0, 45, 90 or 135 using a gray code mapping. This phase value is added to the output of the multiplexer (0 or 180 degrees) to obtain the final 8PSK modulation angle (0 to 315 degrees in 45 degree steps)

Figure B-2 is a diagram of the PTCM decoder used by WINMOR's Trellis 8PSK mode.

WINMOR 8PSK Pragmatic Trellis Code Modulation (PTCM) Decoding **Demodulated 8PSK Differential Phase** Weak RS From DSP (0 to 360 degrees, with noise) Strong RS 2 bit Symbol to Best estimate Weak/Strong U₁ Byte packing of Uncoded Comparator Reed-Solomon Decoder **Phase** Weak/Strong Angle 90 Multiplier Frame toggle **Degrees** Modulo 360 **Final Frame Data:** Degrees (nullifies uncoded phase) Most Likely Estimate of Viterbi Encoded Phase Angle to Soft I and Q Viterbi Decoding Viterbi Encodina Mapping Symbol to Angle Mapping [8 bit soft I & Q 0, 45, 90,135 R=1/2, K=7R=1/2, K=7resolution] Degrees (Voyager) (Voyager) U₁ C₀, C₁ /iterbi Decoder (Gray code) Viterbi Encoder Same as Encoding

Figure B-2 WINMOR 8PSK PTCM Decoding

The decoding operation is somewhat more complicated and summarized as follows: The demodulated differential phase angle from the DSP (0 to +360 degrees, with noise) is the input to the decoder (one angle per symbol time). The angle is doubled, modulo 360 to nullify the 0 or 180 degree component of the uncoded bit. The resulting phase value 0 to 360 degrees in nominal (now 90) degree steps) is recoded to soft I and Q values which will be the soft I and Q inputs for two binary values input to the Viterbi encoder. Figure B-3 shows the mechanism for the angle to soft I

& Q mapping. The Viterbi decoder generates the best estimate for the original binary bit for each pair of soft I and Q inputs. This bit becomes the decoded symbol least significant bit U₁. U₁ is also fed into a Viterbi Encoder and Symbol to Angle mapper (exactly the same as is used in the encoder in Fig B-1) to yield the most likely estimate of the original Viterbi encoded phase angle value. This most likely estimate (0 to 135 degrees in 45 degree steps) is then subtracted from the original differential phase angle from the DSP to yield a best estimate of the uncoded bit phase (nominally 0 or 180 degrees). The resultant best estimate is compared to 90 degrees to generate U_0 the most significant bit of the symbol. The symbols composed of U_0 and U₁ are then packed 4 symbols/byte for Reed-Solomon decoding. If this is the initial transmission of the frame the weak R-S code of 243,255 (6) shortened to 82 bytes is used. This weak R-S code will correct up to 6 byte errors in the total 82 bytes transmitted. If the frame is a repeat (requested after a decode failure of initial attempt) then the 82 bytes of data are interpreted as the ID + parity only component of a strong R-S code of 175,255 code which can correct up to 40 errors of the shortened 150 code consisting of the 70 original payload + overhead bytes concatenated with the 80 strong R-S parity bytes. Thus the strong R-S code can correct up to 40 errors of the 150 bytes of data plus strong parity (transmitted over two frames).

Phase Angle to Soft I and Q Mapping (Gray Code)

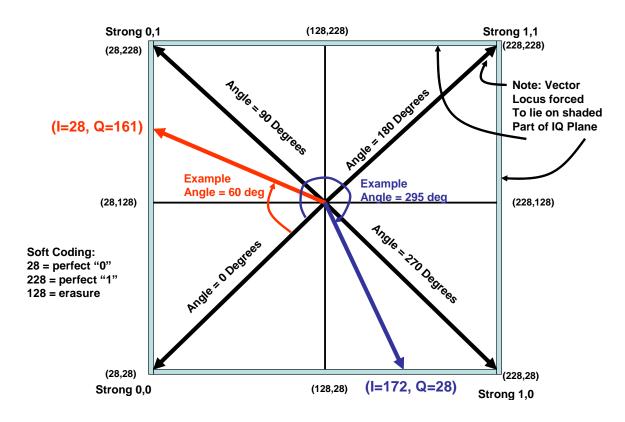


Figure B-3 Phase Angle to Soft I and Q Mapping with examples.

A similar approach to PTCM encoding and decoding is done on both the 4PSK mode (no uncoded bits, 2 Viterbi bits) and the 16PSK mode (2 uncoded bits, 2 Viterbi bits).

References:

- 1) A Pragmatic Approach to Trellis-Coded Modulation. A. Viterbi, J. Wolf, E. Zejavo, R. Padovani IEEE Communications Magazine July 1989, pp11-19 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=31452
- 2) Data Recovery in Differentially Encoded Quadrature Phase Shift Keying. J. Bard, M. Nezami, and M. Diaz Mnemonics, Inc Melbourne, FL. http://whitepapers.silicon.com/0,39024759,60446221p,00.htm
- 3) Error Control Coding, Second Edition. Shu Lin and Daniel Costello Pearson Prentice Hall 2004 ISBN 0-13-042672-5
- 4) Trellis Coded Modulation Tutorial, Charan Langton, 2004. http://www.complextoreal.com/chapters/tcm.pdf

Appendix C: Detailed State Change Rules

These rules provide the detail that implements the WINMOR Protocol State Diagram shown in Fig 6-1.

1 Rules for IRStoISS State

1.1 Event = ACK 00 Received

Action: Send Data (data pending or IDLE)

Next State: ISS

1.2 Event = No ACK received by BREAK timeout

Action: Repeat BREAK

Next State = IRStoISS

1.3 Event: Inactivity Timeout

Conditions: none

Actions: Send Disconnect Request, repeat

Next State: DISCONNECTING

2 Rules for DISCONNECTED State

2.1 Event = Connect request Frame detect (before Decode)

Conditions: Decode Frame type Connect Request

Action: none

Next State: CONNECT PENDING

2.2 Event: Disconnect Request

Conditions: Session ID matches last session Action: Send ACK(FF) with last session ID

Next State: DISCONNECTED

3 Rules for CONNECTING State

3.1 Event = Bandwidth specific ACK received

Conditions: Matches current session ID

Action: Send IDLE, set Repeat ON if no Data pending

Next State: ISS

3.2 Event: Bandwidth specific ACK received

Conditions: Matches current session ID

Actions: Send DATA, set Repeat ON if Data is pending

Next State: ISS

3.3 Event: Connect request Timeout

Conditions: none Action: None

Next State: DISCONNECTED

4 Rules for CONNECT PENDING State

4.1 Event = Successful Decode to Target Call sign

Conditions: Target Call sign matches local call sign

Action: Send bandwidth specific ACK, set Repeat OFF

Next State: IRS

4.2 Event: Decode Failure

Conditions: Sumcheck fail or Target <> Local call sign

Actions: none

Next State: DISCONNECTED

5 Rules for DISCONNECTING State

5.1 Event = Control Frame Timeout

Conditions: Disconnect Repeat count < 5

Action: Send Disconnect Request, set Repeat ON

Next State: DISCONNECTING

5.2 Event: Control Frame Timeout

Conditions: Disconnect Repeat count > = 5

Actions: none

Next State: DISCONNECTED

6 Rules for IRS State

6.1 Event = Data Received, Good match to ID bits

Conditions: Session ID match

Action: Send ACK for each carrier correct, no repeats

Next State: IRS

6.2 Event: Data Received, Poor match to ID

Conditions: Session ID mismatch

Actions: none Next State: IRS

6.3 Event: Control Received, Request Last PSN

Conditions: Session ID match, Sumcheck OK Actions: Send ACK containing Last PSN

Next State: IRS MODESHIFT

6.4 Event: Inactivity Timeout

Conditions: none

Actions: Send Disconnect Request, repeat

Next State: DISCONNECTING

7 Rules for IRS MODE SHIFT State

7.1 Event = Data Received

Conditions: Session ID Match

Action: Send ACK for each carrier no repeats

Next State: IRS

7.2 Event: Control Frame Idle received

Conditions: none

Actions: ACK(0), No repeat

Next State: IRS

7.3 Event: Inactivity Timeout

Conditions: none

Actions: Send Disconnect Request, repeat

Next State: DISCONNECTING

8 Rules for ISS State

8.1 Event = ACK received

Conditions: OB bytes pending after ACK processed, no speed shift

required

Action: Send next OB Packet with Repeat

Next State: ISS

8.2 Event: ACK received

Conditions: OB bytes pending after ACK processed, speed shift

Actions: Send Control request last PSN with repeat

Next State: ISS MODESHIFT

8.3 Event: ACK received

Conditions: no OB bytes pending after ACK processed

Actions: Send Control Idle with repeat

Next State: ISS

8.4 Event: Inactivity Timeout

Conditions: none

Actions: Send Disconnect Request, repeat

Next State: DISCONNECTING

9 Rules for ISS MODE SHIFT State

9.1 Event = PSN Received

Conditions: Session ID Match, Sumcheck OK, OB Packets Remaining

Action: Send next Data packet

Next State: ISS

9.2 Event = PSN Received

Conditions: Session ID Match, Sumcheck OK, no OB Packets Remaining

Action: Send Idle, set repeat

9.3 Event: Inactivity Timeout

Conditions: none

Actions: Send Disconnect Request, repeat

Next State: DISCONNECTING